Congruence

Informal definition: Two polygons are congruent (\cong) if they are the same shape and same size
Notation: In a statement of congruence of two polygons, the polygons are written so that corresponding (matching) vertices are in the same order.

Definition: Two figures are congruent if one is the image of the other under a rigid motion.

Ex: Assuming they are congruent, describe a rigid motion that will take quadrilateral $A B C D$ onto the other quadrilateral.

1) Translate along the vector $\overline{C P}$
2) Rotate $C W$ until $\overline{B^{\prime} C^{\prime}}$ coincides with $\overline{Q P}$
3) Reflect over $\overline{Q P}$

Note: This was not the only possible way.

Note: For a polygon, congruence is only possible if
The vertices can be put into correspondence (matched) so that

1) All pairs of corresponding sides are congruent and
2) All pairs of corresponding angles are congruent.

Ex: If $\triangle \underline{D O G} \cong \triangle C A T$,
a. Name three pairs of congruent angles.

$$
\angle D \cong \angle C, \angle O \cong \angle A, \text { and } \angle G \cong \angle T
$$

b. Name three pairs of congruent sides.

$$
\overline{D O} \cong \overline{C A}, \overline{O G} \cong \overline{A T} \text {, and } \overline{D G} \cong \overline{C T}
$$

Ex: Describe a rigid motion that will take $\triangle R A T$ onto the other triangle.
a.

1) Translate along the vector $\overline{R C}$
b.

2) Translate along the vector $\overline{R F}$
3) Reflect over $\overline{F Y}$ (image of $\overline{R A}$) OR
4) Reflect over the vertical line that bisects $\overline{T L}$
c.

5) Rotate $90^{\circ} \mathrm{CCW}$ around point R
6) Translate along vector $\overline{R P}$ OR
Reverse order (they're commutative)
d.

7) Translate along the vector $\overline{\mathrm{TN}}$
8) Rotate CW until $\overline{T A}$ coincides with $\overline{N E}$
9) Reflect over the $\overline{N E}$

Ex: In the diagram at right $\triangle B I G \cong \triangle P I G$.
Find the perimeter of quadrilateral $B I P G$.

Since $\triangle B I G \cong \triangle P I G$, we know $\overline{B I} \cong \overline{P I}$.

$$
\begin{aligned}
2 x+7 & =4 x-9 \\
x & =8
\end{aligned}
$$

$B I=P I=2(8)+7=23$
$B G=P G=3(8)-2=22$
Perimeter of BIPG $=2(23)+2(22)=90$

Ex: If $\triangle B U G \cong \triangle C O W, m \angle B=x, m \angle U=2 x-3 y, m \angle C=3 y-20$ and $m \angle O=y+20$, find the numerical measures of $\angle G$ and $\angle W$.

$$
\begin{aligned}
& \text { We know } \angle B \cong \angle C \quad \text { and } \angle U \cong \angle O \\
& x=3 y-20 \text { and } 2 x-3 y=y+20 \\
& \text { By substitution: } 2(3 y-20)-3 y=y+20 \\
& 6 y-40-3 y=y+20 \\
& 2 y=60 \\
& y=30 \\
& x=3(30)-20=70 \\
& m \angle B=70, m \angle U=2(70)-3(30)=50 \\
& m \angle G=m \angle W=180-(70+50)=60
\end{aligned}
$$

