Properties of Certain Transformations

Ex: The diagrams show three transformations or quadrilateral *ABCD*, a translation, a rotation and a reflection. In *ABCD*, we have BC = 6, $m \angle C = 50^{\circ}$, \overline{DPC} , $\overline{AB} \parallel \overline{CD}$ and *M* is the midpoint of \overline{AD} .

Which of the following are true?

	Translation	Rotation	Reflection
B'C' = 6			
$m \angle C' = 50^{\circ}$			
$\overline{D'P'C'}$			
$\overline{A'B'} \parallel \overline{C'D'}$			
M' mdpt of $\overline{A'D'}$			

We say these transformations

If a segment has a certain length, its image will have the same length.

If an angle has a certain measure, its image will have the same measure.

If points are collinear, their images will be collinear.

If two lines are parallel, their images will be parallel.

If *M* is a midpoint of a certain segment, its image will be the midpoint of the image of the segment.

Rigid Motions

A rigid motion is a transformation that

1.

2.

Another way of thinking about it: After a rigid motion, the image of any figure will be exactly the same shape and size as the pre-image.

Translations Rotations Reflections	• are all rigid motions.	Also, any composition of translations, rotations and/or reflections will be a rigid motion.
--	--------------------------	---

Orientation

Definition: Orientation of a plane figure refers to

In all three diagrams above, $\triangle ABC$ is oriented

Which isometries *preserve orientation*?

These are called

A transformation that changes all distances by the same ration is called a

Geometry HW: Transformations – 8 Rigid Motions

- 1. a. What is an *isometry*? Name the three basic ones.
 - b. In an isometry,
 - 1) Is collinearity always preserved?
 - 2) Is angle measure always preserved?
 - 3) Is parallelism always preserved?
 - 4) Are midpoints always preserved?
 - 5) Is orientation always preserved?
 - 6) Is slope always preserved?
- 2. Which of the following transformations is *not* an isometry?
 (1) Line reflection
 (2) Rotation
 (3) Translation
 (4) Dilation
 (5) Glide reflection
- 3. Which of the following transformations do *not* preserve orientation? (Give all correct choices.)
 (1) Line reflection
 (2) Rotation
 (3) Translation
 (4) Dilation
 (5) Glide reflection
- 4. Identify each of the following as a direct isometry (D), opposite isometry (O), or neither (N).
 - a. Line reflection b. Rotation c. Translation d. Dilation
 - e. Glide reflection f. $(x, y) \rightarrow (-x, y)$ g. $(x, y) \rightarrow (2x, 2y)$ h. $(x, y) \rightarrow (x + 2, y 3)$
 - i. $(x, y) \rightarrow (-x, -y)$ j. A composition of two line reflections
 - k. A composition of three line reflections
- 5. Tell whether each figure represents a rigid motion. If not, give a reason why not.

6. In each diagram below, identify a rigid motion that would take the figure on the left onto its image on the right. (Note: there can be more than one right answer.)

7. In each diagram below, identify a specific rigid motion that would take $\triangle ABC$ onto its image as shown.

