Properties of Certain Transformations

Ex: The diagrams show three transformations or quadrilateral $A B C D$, a translation, a rotation and a reflection. In $A B C D$, we have $B C=6, m \angle C=50^{\circ}, \overline{D P C}, \overline{A B} \| \overline{C D}$ and M is the midpoint of $\overline{A D}$.

Which of the following are true?

	Translation	Rotation	Reflection	
$B^{\prime} C^{\prime}=6$				
$m \angle C^{\prime}=50^{\circ}$				
$\overline{D^{\prime} P^{\prime} C^{\prime}}$				
$\overline{A^{\prime} B^{\prime}} \\| \overline{C^{\prime} D^{\prime}}$				
$M^{\prime} \mathrm{mdpt}$ of $\overline{A^{\prime} D^{\prime}}$				

We say these transformations

If a segment has a certain length, its image will have the same length.
If an angle has a certain measure, its image will have the same measure.
If points are collinear, their images will be collinear.

If two lines are parallel, their images will be parallel.
If M is a midpoint of a certain segment, its image will be the midpoint of the image of the segment.

Rigid Motions

A rigid motion is a transformation that
1.
2.

Another way of thinking about it: After a rigid motion, the image of any figure will be exactly the same shape and size as the pre-image.
Translations
\(\left.\begin{array}{l}Rotations

Reflections\end{array}\right\}\) are all rigid motions. \quad| Also, any composition of |
| :--- |
| translations, rotations and/or |
| reflections will be a rigid motion. |

Orientation

Ex: Translation

Rotation

Reflection

Definition: Orientation of a plane figure refers to
In all three diagrams above, $\triangle A B C$ is oriented
Which isometries preserve orientation?

These are called

A transformation that changes all distances by the same ration is called a

1. a. What is an isometry? Name the three basic ones.
b. In an isometry,
1) Is collinearity always preserved?
2) Is angle measure always preserved?
3) Is parallelism always preserved?
4) Are midpoints always preserved?
5) Is orientation always preserved?
6) Is slope always preserved?
2. Which of the following transformations is not an isometry?
(1) Line reflection
(2) Rotation
(3) Translation
(4) Dilation
(5) Glide reflection
3. Which of the following transformations do not preserve orientation? (Give all correct choices.)
(1) Line reflection
(2) Rotation
(3) Translation
(4) Dilation
(5) Glide reflection
4. Identify each of the following as a direct isometry (D), opposite isometry (O), or neither (N).
a. Line reflection
b. Rotation
c. Translation
d. Dilation
e. Glide reflection
f. $(x, y) \rightarrow(-x, y)$
g. $(x, y) \rightarrow(2 x, 2 y)$
h. $(x, y) \rightarrow(x+2, y-3)$
i. $(x, y) \rightarrow(-x,-y)$
j. A composition of two line reflections
k. A composition of three line reflections
5. Tell whether each figure represents a rigid motion. If not, give a reason why not.
a.

b.

c.

g.
d.

e.

f.

h.

6. In each diagram below, identify a rigid motion that would take the figure on the left onto its image on the right. (Note: there can be more than one right answer.)
a.

b.

yR
<
7. In each diagram below, identify a specific rigid motion that would take $\triangle A B C$ onto its image as shown.
a.

b.

c.

d.

e.

f.

