Geometry Notes TG - 6: Compositions of Transformations

- Ex: $\triangle ABC$ has vertices A(-1, -1), B(-4, -1) and C(-5, -4).
 - a. Draw $\Delta A'B'C'$, the image of ΔABC after the transformation $T_{8,6}$.
 - b. Draw $\Delta A''B''C''$, the image of $\Delta A'B'C'$ after the transformation r_{x-axis} .
- Definition: A *composition of transformations* is a combination of two (or more) transformations where the second transformation transforms the *image* of the first one.

Notation: $r_{x-axis} \circ T_{86}(A) = A''$

Note: Compositions are done <u>right to left</u>. In above, do $T_{8,6}$ FIRST, then r_{x-axis} .

Ex:
$$R_{90^{\circ}} \circ T_{2,-3}(2,1) = R_{90^{\circ}}(4,-2) = (2,4)$$

Ex:
$$T_{2,-3} \circ R_{90^{\circ}}(2,1) = \mathsf{T}_{2,-3}(-1,2) = (1,-1)$$

Note: In general, compositions are NOT commutative. (There are exceptions.)

Ex: Write a composition of transformations that will take ΔBUG onto its image $\Delta B'U'G'$. Note: There are several (actually infinite but let's not go there) possible answers.

- 1) Translate $\triangle BUG$ right 7 units
- 2) Reflect over the x-axis

OR

- 1) Reflect \triangle BUG over the x-axis
- 2) Translate right 7 units OR

1) Translate right 7, down 4

2) Reflect over the line y = -2

- Ex: Describe a composition of transformations under which the image of $\triangle ANT$ will be $\triangle A'N'T'$.
 - 1) Translate along the vector $\overline{TT'}$
 - 2) Rotate CW about T' until \overline{TN} coincides with $\overline{T'N'}$
 - 3) Reflect over the line $\overline{T'N'}$

Ex: Is the composition $r_{y-axis} \circ R_{90^{\circ}}$ commutative?

$$\begin{split} r_{y\text{-}axis} &\circ \mathsf{R}_{90^{\circ}}(x,y) = r_{y\text{-}axis}(-y,x) = (y,x) \\ \mathsf{R}_{90^{\circ}} &\circ r_{y\text{-}axis}(x,y) = \mathsf{R}_{90^{\circ}}(-x,y) = (-y,-x) \end{split}$$

No, this composition is not commutative.

Definition: A glide reflection is a composition of a line reflection and a translation in a direction parallel to the line of reflection.