Dilations

A dilation is an enlargement or reduction of a figure.
If point P be the center of dilation, then
Enlargement: All points move AWAY from point P
by the same factor.
Remember: A factor is something that is MULTIPLIED

Reduction: All points move TOWARD point P by the same factor.

The factor (or ratio) by which everything is enlarged or reduced is the constant of dilation, k.

Ex: In the figure at right,
a. Find $\Delta A^{\prime} B^{\prime} C^{\prime}$, the dilation of $\triangle A B C$ by a factor of 3 from the point P.
(See graph)

(See graph)
$\Delta A^{\prime} B^{\prime} C^{\prime}$ is similar to $\triangle A B C$. All distances (lengths) in $\triangle A^{\prime} B^{\prime} C^{\prime}$ are 3 times the corresponding distances in $\triangle A B C$.

Ex: If $A C=8$, then $A^{\prime} C^{\prime}=(3)(8)=24$
a. Find $\triangle A A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the dilation of $\triangle A B C$ by a factor of $1 / 2$ from the point P.
(See graph)
Again, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is similar to $\triangle A B C$. All distances (lengths) in $\triangle A^{\prime} B^{\prime} C^{\prime}$ are $1 / 2$ the corresponding distances in $\triangle A B C$.

Ex: If $A C=8$, then $A^{\prime} C^{\prime}=(1 / 2)(8)=4$

Ex: $\triangle A B C$ has vertices at $A(5,0), B(2,4)$ and $C(-1,2)$. Dilate $\triangle A B C$ by a factor of 3 from the origin.
$A(5,0) \rightarrow A^{\prime}(15,0)$
$B(2,4) \rightarrow B^{\prime}(6,12)$
$C(-1,2) \rightarrow C^{\prime}(-3,6)$

In this dilation,
$P(x, y) \rightarrow P^{\prime}(3 x, 3 y)$

Notation: $D_{3}(x, y)=(3 x, 3 y)$
In general, $D_{k}(x, y)=(k x, k y) \quad$ For dilations, think MULTIPLY.

Ex: 1) $D_{4}(-3,5)=(-12,15)$
2) $D_{3 / 4}(8,-12)=(6,-9)$
3) Find the value of k if $D_{k}(6,-9)=(10,-15)$

$$
6 k=10 \rightarrow k=10 / 6 \text { or } 5 / 3
$$

Note that using the y-coordinates gives the same result.
4) $D_{-2}(2,3)=(-4,-6)$

A dilation by a negative constant is a combination of

1. A "normal" dilation and
2. A reflection in the origin.

