Dilations

A *dilation* is an enlargement or reduction of a figure.

If point *P* be the *center of dilation*, then

Enlargement: All points move AWAY from point P by the same factor. Remember: A factor is something that is MULTIPLIED

Reduction: All points move TOWARD point P by the same factor.

The factor (or ratio) by which everything is enlarged or reduced is the *constant of dilation*, *k*.

Ex: In the figure at right,

a. Find $\Delta A'B'C'$, the dilation of ΔABC by a factor of 3 from the point *P*. (See graph)

 $\Delta A'B'C'$ is similar to ΔABC . All distances (lengths) in $\Delta A'B'C'$ are 3 times the corresponding distances in ΔABC .

Ex: If AC = 8, then A'C' = (3)(8) = 24

a. Find $\Delta A"B"C"$, the dilation of ΔABC by a factor of 1/2 from the point *P*. (See graph)

Again, $\Delta A'B'C'$ is similar to ΔABC . All distances (lengths) in $\Delta A'B'C'$ are 1/2 the corresponding distances in ΔABC .

Ex: If AC = 8, then A'C' = (1/2)(8) = 4

Dilations with Coordinates

- Ex: $\triangle ABC$ has vertices at A(5, 0), B(2, 4)and C(-1, 2). Dilate $\triangle ABC$ by a factor of 3 from the origin.
 - $A(5, 0) \rightarrow A'(15, 0)$

 $B(2, 4) \rightarrow B'(6, 12)$

 $C(-1, 2) \rightarrow C'(-3, 6)$

In this dilation, $P(x, y) \rightarrow P'(3x, 3y)$

P'(3x, 3y)

Notation: $D_3(x, y) = (3x, 3y)$

In general, $D_k(x, y) = (kx, ky)$

For dilations, think MULTIPLY.

Ex: 1) $D_4(-3, 5) = (-12, 15)$

2) $D_{3/4}(8, -12) = (6, -9)$

3) Find the value of *k* if $D_k(6, -9) = (10, -15)$

 $6k = 10 \rightarrow k = 10/6$ or 5/3Note that using the y-coordinates gives the same result.

4) $D_{-2}(2, 3) = (-4, -6)$

A dilation by a negative constant is a combination of

- 1. A "normal" dilation and
- 2. A reflection in the origin.

