Dilations

A *dilation* is an enlargement or reduction of a figure.

If point *P* be the *center of dilation*, then

Enlargement: All points move

Reduction: All points move

The factor (or ratio) by which everything is enlarged or reduced is the *constant of dilation*, *k*.

Ex: In the figure at right,

a. Find $\Delta A'B'C'$, the dilation of ΔABC by a factor of 3 from the point *P*.

a. Find $\Delta A"B"C"$, the dilation of ΔABC by a factor of 1/2 from the point *P*.

Dilations with Coordinates

- Ex: $\triangle ABC$ has vertices at A(5, 0), B(2, 4)and C(-1, 2). Dilate $\triangle ABC$ by a factor of 3 from the origin.
 - $A(5, 0) \rightarrow A'$
 - $B(2, 4) \rightarrow B'$

 $C(-1, 2) \rightarrow C'$

Ex: 1) $D_4(-3, 5) =$

- 2) $D_{3/4}(8, -12) =$
- 3) Find the value of *k* if $D_k(6, -9) = (10, -15)$

4) $D_{-2}(2, 3) =$

A dilation by a negative constant is a combination of

1.

2.

Geometry HW: Transformations - 5

- 1. Using the rule $(x, y) \rightarrow (4x, 4y)$ find the image of (2, -1)
- 2. Evaluate $D_3(-2, 5)$.
- 3. Find the image of (4, -12) under a dilation of constant 1/2.
- 4. If $D_k(-3, 4) = (-12, 16)$, find the value of k.
- 5. What is the constant of dilation for a dilation in which the image of (12, -9) is (8, -6)?
- 6. In the diagram at right, *O* is the center of dilation and $D_k(\Delta OQR) = \Delta OPS$. a. What is the image of *R* under the dilation?
 - b. $D_k(Q) =$ c. $D_k(O) =$ d. $D_k(\overline{OR}) =$
 - e. If *P* is the midpoint of \overline{OQ} , what is the constant of dilation *k*?
 - f. Using the value of k from part e, if SP = 6, find RQ.
- 7. a. Under what dilation will the image of (0, 2) be (0, 8)?
 - b. Under what translation will the image of (0, 2) be (0, 8)?
 - c. Under a reflection in what point will the image of (0, 2) be (0, 8)?
 - d. Under a reflection in what line will the image of (0, 2) be (0, 8)?

- 8. a. Graph $\triangle ABC$ with vertices A(1, 3), B(4, 1), and C(1, 1).
 - b. Graph $\Delta A'B'C'$, the image of ΔABC after a dilation D_3 .
 - c. Find the lengths of \overline{AB} and $\overline{A'B'}$ in simplest radical form.
 - d. How many times longer is $\overline{A'B'}$ than \overline{AB} ?
 - e. Find the areas of $\triangle ABC$ and $\triangle A'B'C'$.
 - f. How many times larger is the area of $\Delta A'B'C'$ than the area of ΔABC ?
- 9. A certain hexagon has a perimeter of 30 and an area of 54.a. Find the perimeter and the area of the hexagon after a dilation of 3.
 - b. Find the perimeter and the area of the hexagon after a dilation of 1/2.
- 10. a. Graph the line $l, y = \frac{1}{2}x$.
 - b. Graph the image of l after a dilation of 3 in the origin.
 - c. Graph the line k, $y = \frac{1}{2}x + 2$
 - d. Graph the image of k after a dilation of 3 in the origin.
 - e. Complete (and remember) the following:
 After a dilation, the image of a line passing through the center of dilation is the ______ line.
 After a dilation, the image of a line *not* passing through the center of dilation is a ______ line.