Translations

A translation is a "slide" of a figure.

In a translation, all points in the plane move

- the same direction (parallel)
- the same distance.

The distance and direction may be represented by a "vector:" $\overline{A A^{\prime}}, \overline{B B^{\prime}}, \overline{C C^{\prime}}$ or just \bar{v}.

Properties of Translations:

1. For any two points P and Q and their images P^{\prime} and Q^{\prime},

$$
\overline{P P^{\prime}} \cong \overline{Q Q^{\prime}} \text { and } \overline{P P^{\prime}} \| \overline{Q Q^{\prime}}
$$

2. Distances are preserved.
3. Angle measures are preserved.

Translations with Coordinates

Ex: $\triangle A B C$ has vertices at $A(5,0), B(2,4)$ and $C(-1,2)$. A certain translation moves A to A^{\prime}. Draw $\Delta A^{\prime} B^{\prime} C^{\prime}$ under that translation.
$A(5,0) \rightarrow A^{\prime}(11,-3)$
$B(2,4) \rightarrow B^{\prime}(8,1)$
$C(-1,2) \rightarrow C^{\prime}(5,-1)$
In this translation, $P(x, y) \rightarrow P^{\prime}(x+6, y-3)$
Notation: $T_{6,-3}(x, y)=(x+6, y-3)$.

In general, $\quad T_{a, b}(x, y)=(x+a, y+b) \quad$ For translations, think ADDITION.

Ex: $T_{-5,2}(4,1)=(4+(-5), 1+2)=(-1,3)$
"Left 5, up 2"

Ex: Consider the transformation $T_{T \bar{T}}$.
a. What does $T_{T j}$ mean?

The image of T is J and all other points move the same distance and direction. All points move "left 2, up 1."
b. Find the image of W. $W \rightarrow M$
c. Find the image of $\overline{K S}$. CI

d. Find the preimage of $\overline{H I}$. (Work backwards) QS
e. What is an alternate symbolic notation for this translation? $\mathrm{T}_{-2,1}$

Ex: On the same chart above, find
a. $R_{J}(C)=S$
b. $r_{\overline{C W}}(M)=S$
c. $R_{Q .90^{\circ}}(D)=N$

