
Geometry Notes TG - 3: Translations

Translations

A translation is a "slide" of a figure.

In a translation, all points in the plane move

- the same direction (parallel)
- the same distance.

The distance and direction may be represented by a "vector:" $\overline{AA'}$, $\overline{BB'}$, $\overline{CC'}$ or just \overline{v} .

Properties of Translations:

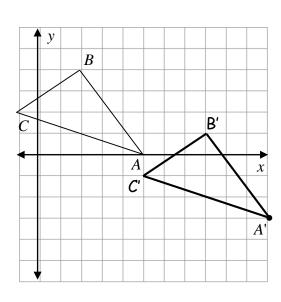
1. For any two points P and Q and their images P' and Q',

$$\overline{PP'} \cong \overline{QQ'}$$
 and $\overline{PP'} || \overline{QQ'}$

- 2. Distances are preserved.
- 3. Angle measures are preserved.

Translations with Coordinates

Ex: $\triangle ABC$ has vertices at A(5, 0), B(2, 4) and C(-1, 2). A certain translation moves A to A'. Draw $\triangle A'B'C'$ under that translation.


$$A(5,0) \rightarrow A'(11,-3)$$

$$B(2, 4) \rightarrow B'(8, 1)$$

$$C(-1, 2) \rightarrow C'(5, -1)$$


In this translation, $P(x, y) \rightarrow P'(x + 6, y - 3)$

Notation: $T_{6,-3}(x, y) = (x + 6, y - 3)$.

In general, $T_{a,b}(x, y) = (x + a, y + b)$ For translations, think ADDITION. Right a Up b

Ex:
$$T_{-5,2}(4, 1) = (4 + (-5), 1 + 2) = (-1, 3)$$

Ex: Consider the transformation $T_{\overline{TI}}$.

a. What does $T_{\overrightarrow{IJ}}$ mean?

The image of T is J and all other points move the same distance and direction. All points move "left 2, up 1."

- b. Find the image of W. $W \rightarrow M$
- c. Find the image of \overline{KS} . CI
- d. Find the *preimage* of \overline{HI} . (Work backwards) QS
- e. What is an alternate symbolic notation for this translation? $T_{-2,1}$

В CD EF \boldsymbol{A} GН K S P Q TM VX Y UWZ

Ex: On the same chart above, find

a.
$$R_J(C) = 5$$

b.
$$r_{\overline{CW}}(M) = S$$

c.
$$R_{Q,90^{\circ}}(D) = N$$