Geometry Notes TG-2: Rotations

Rotations

Informal definition: All points rotate around a given point P by a given angle ϕ (does not have to be 180°).

Informal definition: All points rotate around a given point P by a given angle ϕ.

Notation: $R_{p, \phi}(A)=A^{\prime}$ where P is the "center of rotation" and ϕ is the angle of rotation.
$m \angle A P A^{\prime}=\phi=m \angle B P B^{\prime}=m \angle C P C^{\prime}=e t c$.

Properties of rotations:

1. The center of rotation P is invariant (unchanged)
2. For all other points, Q, the image Q^{\prime} is the point such that

$$
\begin{array}{ll}
m \angle Q P Q^{\prime}=\phi & m \angle A P A^{\prime}=\phi=m \angle B P B^{\prime}=m \angle C P C^{\prime}=\text { etc. } \\
\text { and } \\
P Q=P Q^{\prime} & P A=P A^{\prime}, P B=P B^{\prime}, P C=P C^{\prime}, \text { etc. }
\end{array}
$$

Note: By definition, positive rotations are always counterclockwise

Ex: For a counterclockwise rotation of 60°, write either 60° or $60^{\circ} \mathrm{CCW}$
For a clockwise rotation of 60°, write either -60° or $60^{\circ} \mathrm{CCW}$ (not $-60^{\circ} \mathrm{CW}$)
3. Distances are preserved.
as a 180° rotation about the point.
4. Angle measure is preserved.

Special cases:
a. R_{ϕ} (no point specified) means rotate ϕ° around the origin
b. R_{P} (no angle specified) means rotate 180° around point P.

Origin Rotations with Coordinates

Ex: Let A have coordinates (4, 2).
a. $R_{90^{\circ}}(4,2)=(-2,4)$

$$
R_{90^{\circ}}(x, y)=(-y, x)
$$

b. $R_{180^{\circ}}(4,2)=(-4,-2)$

$$
R_{180^{\circ}}(x, y)=(-x,-y)=\operatorname{Ro}(x, y)
$$

c. $R_{270^{\circ}}(4,2)=(2,-4)$

$$
R_{270^{\circ}}(x, y)=(y,-x)
$$

Note: R270 is the same as R-90.

Note: It is probably NOT worth memorizing the formulas for R90 and R_{270}. Instead, to visualize each rotation, turn your whole paper by the appropriate amount.

