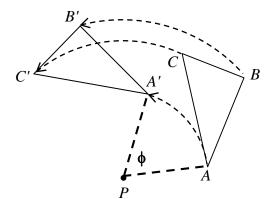
Rotations

Informal definition: All points rotate around a given point P by a given angle ϕ (does not have to be 180°).



Informal definition: All points rotate around a given point *P* by a given angle ϕ .

Notation: $R_{P,\phi}(A) = A'$ where P is the "center of rotation" and ϕ is the angle of rotation.

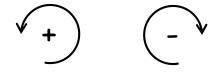
 $m \angle APA' = \phi = m \angle BPB' = m \angle CPC' = etc.$

Properties of rotations:

- 1. The center of rotation *P* is invariant (unchanged)
- 2. For all other points, Q, the image Q' is the point such that

 $\begin{array}{ll} m \angle QPQ' = \phi & m \angle APA' = \phi = m \angle BPB' = m \angle CPC' = etc. \\ and \\ PQ = PQ' & PA = PA', PB = PB', PC = PC', etc. \end{array}$

Note: By definition, positive rotations are always counterclockwise



Ex: For a counterclockwise rotation of 60° , write either 60° or 60° CCW

For a clockwise rotation of 60° , write either -60° or 60° CCW (not -60° CW)

3. Distances are preserved. as a 180° rotation about the point.

4. Angle measure is preserved.

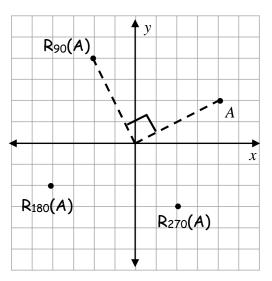
Special cases:

- a. R_{ϕ} (no point specified) means rotate ϕ° around the origin
- b. R_P (no angle specified) means rotate **180**° around point *P*.

Origin Rotations with Coordinates

- Ex: Let A have coordinates (4, 2).
 - a. $R_{90^{\circ}}(4, 2) = (-2, 4)$ $R_{90^{\circ}}(x, y) = (-\gamma, \times)$
 - b. $R_{180^{\circ}}(4, 2) = (-4, -2)$
 - $R_{180^{\circ}}(x, y) = (-x, -y) = R_0(x, y)$
 - c. $R_{270^{\circ}}(4, 2) = (2, -4)$
 - $R_{270^{\circ}}(x, y) = (y, -x)$

Note: R270 is the same as R-90.



Note: It is probably NOT worth memorizing the formulas for R_{90} and R_{270} . Instead, to visualize each rotation, turn your whole paper by the appropriate amount.