Geometry Notes TG-2: Rotations

Rotations

Informal definition: All points rotate around a given point P by a given angle ϕ (does not have to be 180°).

Informal definition: All points rotate around a given point P by a given angle ϕ.

Notation:

Properties of rotations:

1. The center of rotation P
2. For all other points, Q, the image Q^{\prime} is the point such that

Note: By definition, positive rotations are always

Ex: For a counterclockwise rotation of 60°, write either
For a clockwise rotation of 60°, write either
3. Distances are preserved.
4. Angle measure is preserved.

Special cases:
a. R_{ϕ} (no point specified) means rotate ϕ° around
b. R_{P} (no angle specified) means rotate around point P.

Origin Rotations with Coordinates

Ex: Let A have coordinates (4, 2).
a. $R_{90^{\circ}}(4,2)=$

$$
R_{90^{\circ}}(x, y)=
$$

b. $R_{180^{\circ}}(4,2)=$

$$
R_{180^{\circ}}(x, y)=
$$

c. $R_{270}(4,2)=$

$$
R_{270^{\circ}}(x, y)=
$$

1. What is the image of $(-3,1)$ under a rotation of 90° about the origin?
2. a. What is the image of $(4,-5)$ under a rotation of 180° about the origin?
b. What is the difference between this and a rotation -180° (i.e. $180^{\circ} \mathrm{CW}$) about the origin?
3. Using the rule $(x, y) \rightarrow(-y, x)$, find the image of $A(5,-2)$.
4. a. Find the coordinates P^{\prime}, the image of $P(x, y)$ after a reflection in the x-axis.
b. Find the coordinates $P^{\prime \prime}$, the image of P^{\prime} after a reflection in the y-axis.
c. A reflection in the x-axis followed by a reflection in the y-axis is the same as what single transformation?
5. a. Graph $\triangle R A T$ having coordinates $R(0,2), A(2,5)$ and $T(5,2)$.
b. Graph $\triangle R^{\prime} A^{\prime} T$, the image of $\triangle R A T$ after a 90° rotation about the origin.
c. Graph $\Delta R^{\prime \prime} A^{\prime \prime} T^{\prime \prime}$, the image of $\triangle R A T$ after a reflection in the line $y=x$.
6. In the diagram at right, $\Delta R^{\prime} A^{\prime} T^{\prime}$ is the image of $\triangle R A T$ after a rotation around point P.
a. What is the angle and direction of rotation? (You do not need a protractor, just your brain.)
b. What is the length of $\overline{R^{\prime} T^{\prime}}$? How do we know?
c. What is the measure of $\angle R^{\prime} T^{\prime} A^{\prime}$? How do we know?

7. Evaluate the following:
a. $r_{y \text {-axis }}(3,-4)=$
b. $R_{180^{\circ}}(4,3)=$
c. $R_{90^{\circ}}(0,2)=$
d. $R_{O}(3,-2)=$
e. $r_{y=x}(-5,-7)=$
8. Refer to the diagram at right to answer the following:
a. $R_{H, 90^{\circ}}(C)=$
b. $R_{R, 90^{\circ}}(\overline{T Y})=$
c. $R_{L}(P)=$
d. $R_{O, 90^{\circ}}(\angle I J N)=$
e. $R_{O}(\overline{V W})=$
f. $R_{O, 270^{\circ}}(D)=$
g. $R_{G}(K)=$
h. $r_{\overline{K N}}(B)=$
i. $r_{\overline{P D}}(\overline{A B})=$

Read: Rotational Symmetry and Point Symmetry

A figure has rotational symmetry if it is the image of itself after a rotation of $0^{\circ}<\phi<360^{\circ}$.

A regular hexagon has 60° rotational symmetry b / c it is its own image after a 60° rotation.
It also has rotational symmetry of all multiples of $60^{\circ}: 120^{\circ}, 180^{\circ}, 240^{\circ}$ and 300°.
Because it has 180° rotational symmetry, it is also said to have point symmetry.

Ex:

A "three leafed rose" has 120° rotational symmetry b / c it is its own image after a 120° rotation. It also has rotational symmetry of all multiples of 120° : 240°.
Because it does not have 180° rotational symmetry, it does not have point symmetry.
9. Which of the following letters has point symmetry but not line symmetry?
(1) W
(2) \mathbf{X}
(3) \mathbf{Y}
(4) \boldsymbol{Z}

Read: The Identity Symmetry

A rotation of 360° (or 0°) is called the "identity symmetry." All figures have identity symmetry. When we count total symmetries, we include all lines of symmetry and all rotational symmetries and the identity symmetry. For example, a square has 8 total symmetries: Four lines of symmetry, shown, and four rotational symmetries (including the identity symmetry), $90^{\circ}, 180^{\circ}, 270^{\circ}$ and 360°.

10. Tell how many total symmetries (including the identity symmetry) each figure has.
a.

b.

Rectangle
Isosceles triangle
c.

Regular
hexagon
d.

