Geometry Notes TG - 2: Rotations

Rotations

Informal definition: All points rotate around a given point P by a given angle ϕ (does not have to be 180°).

Informal definition: All points rotate around a given point *P* by a given angle ϕ .

Notation:

Properties of rotations:

- 1. The center of rotation *P*
- 2. For all other points, Q, the image Q' is the point such that

Note: By definition, positive rotations are always

Ex: For a counterclockwise rotation of 60°, write either

For a clockwise rotation of 60°, write either

- 3. Distances are preserved.
- 4. Angle measure is preserved.

Special cases:

- a. R_{ϕ} (no point specified) means rotate ϕ° around
- b. R_P (no angle specified) means rotate around point P.

Origin Rotations with Coordinates

Ex: Let *A* have coordinates (4, 2).

- a. $R_{90^{\circ}}(4, 2) =$ $R_{90^{\circ}}(x, y) =$
- b. $R_{180^{\circ}}(4, 2) =$

 $R_{180^{\circ}}(x, y) =$

c. $R_{270^{\circ}}(4, 2) =$

 $R_{270^{\circ}}(x, y) =$

			y			
					Α	
-						x
-						x
↓						x
↓						<i>x</i>
						<i>x</i>

Geometry HW: Transformations – 2 Rotations

- 1. What is the image of (-3, 1) under a rotation of 90° about the origin?
- 2. a. What is the image of (4, -5) under a rotation of 180° about the origin?
 - b. What is the difference between this and a rotation -180° (i.e. 180° CW) about the origin?
- 3. Using the rule $(x, y) \rightarrow (-y, x)$, find the image of A(5, -2).
- 4. a. Find the coordinates P', the image of P(x, y) after a reflection in the x-axis.
 - b. Find the coordinates P'', the image of P' after a reflection in the y-axis.
 - c. A reflection in the *x*-axis followed by a reflection in the *y*-axis is the same as what single transformation?
- 5. a. Graph $\triangle RAT$ having coordinates R(0, 2), A(2, 5) and T(5, 2).
 - b. Graph $\Delta R'A'T'$, the image of ΔRAT after a 90° rotation about the origin.
 - c. Graph $\Delta R^{"}A^{"}T^{"}$, the image of ΔRAT after a reflection in the line y = x.
- 6. In the diagram at right, Δ*R'A'T'* is the image of Δ*RAT* after a rotation around point *P*.
 a. What is the angle and direction of rotation? (You do not need a protractor, just your brain.)
 - b. What is the length of $\overline{R'T'}$? How do we know?
 - c. What is the measure of $\angle R'T'A'$? How do we know?

- 7. Evaluate the following: a. $r_{y-axis}(3, -4) =$ b. $R_{180}(4, 3) =$ d. $R_O(3, -2) =$ e. $r_{y=x}(-5, -7) =$ c. $R_{90^{\circ}}(0, 2) =$
- 8. Refer to the diagram at right to answer the following:

a. $R_{H,90^{\circ}}(C) =$	b. $R_{R,90^{\circ}}(\overline{TY}) =$	c. $R_L(P) =$	F
d. $R_{O,90^{\circ}}(\angle IJN) =$	e. $R_O(\overline{VW}) =$	f. $R_{O,270^{\circ}}(D) =$	l
g. $R_G(K) =$	h. $r_{\overline{KN}}(B) =$	i. $r_{\overline{PD}}(\overline{AB}) =$	ŀ
			ŀ

Read: Rotational Symmetry and Point Symmetry

A figure has rotational symmetry if it is the image of itself after a rotation of $0^{\circ} < \phi < 360^{\circ}$.

A regular hexagon has 60° rotational symmetry b/c it is its own image after a 60° rotation. It also has rotational symmetry of all multiples of 60° : 120°, 180°, 240° and 300°.

Because it has 180° rotational symmetry, it is also said to have *point symmetry*.

Ex:

A "three leafed rose" has 120° rotational symmetry b/c it is its own image after a 120° rotation. It also has rotational symmetry of all multiples of 120° : 240° .

Because it does *not* have 180° rotational symmetry, it does not have point symmetry.

9. Which of the following letters has point symmetry but not line symmetry?
(1) W
(2) X
(3) Y
(4) Z

Read: The Identity Symmetry

.

A rotation of 360° (or 0°) is called the "identity symmetry." All figures have identity symmetry. When we count *total* symmetries, we include all lines of symmetry and all rotational symmetries and the identity symmetry. For example, a square has 8 total symmetries: Four lines of symmetry, shown, and four rotational symmetries (including the identity symmetry), 90° , 180° , 270° and 360° .

10. Tell how many total symmetries (including the identity symmetry) each figure has.

